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FOREWORD

IIT Research Institute (IITRI) has conducted an experimental
program to determine the TNT equivalency of two Ml propellant gran-
ulatio,:s. The work was conducted for the Manufacturing Technology
Directorate, Picatinny Arsenal, Dover, New Jersey as a section of
Contract DAAA21-73-C-0737. It is part of the overall program en-
titled "Safety Engineering in Support of Ammunition Plants."

The purpose of this report is to provide engineering data that

can be used in facility siting and structure layouts developed in
connection with the Army's Modernization and Expansion program for
installations and activities.

Technical guidance was provided by Mr. L. Jablansky, P. Price,
and D. Westover of the Manufacturing Technology Directorate,
Picatinny Arsenal, Dover, New Jersey. The experiments were conduct-
ed at IITRI's explosive test facility in La Porte, Indiana. In
addition to the authors, IITRI personnel who made contributions to
this proiram are R. Joyce, D. Hrdina, J. Daley and H. Napadensky.
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INTRODUCTION

Backgrounc(

Past methods used for the system design and siting of manufac-
turing facilities of explosive materials have been based solely on
gross quantities of material handled. Present day technology, how-
ever, has shown that in order to produce cost effective and safe
facilities, design criteria should be based upon the requirements
of the explosive material involved. With the new approach, specific
hazards can be :liminateo or reduced if the unique nature and blast
output of the material xre known. A

In 1"no with the new interest and philosophy, modernization and
lrtde.;ign L currentl> being undertaken for equipment at various
stagces o-, the M1 propellant load and pack (LAP) operation and in-
crem,.-iatU net-weigh operation for ammunition charges using Ml pro-
pellant. Although all the equipment designs have not been finalized,
it is known that bulk quantities of propellant will be well over
100 pounds at various stages of these operations. The largest con-
centrations of propellant occur in the feed hoppers associated with
the weigh-scale and pack-out equipment. The hoppers planned at
Indiana AAP, which are open on top, are to be used in bag loading
operations. Those used at Radford AAP are in a closed system asso-
ciated with the can (shipping drums) pack-out facility.

Considerable work has been performed in establishing air blast
parameters of TNT. For facility designs involving other explosive
materials, therefore, the required design information should be ex-
pressed in terms of "TNT Equivalency," i.e., the equivalent weight• ~of TNT which will produce the same airblast environment As that

,, produced by a quantity of detonable material involved.

Therefore, at the request of the U.S. Army Armament Command
(AR•COM), the Manufacturing Technology Directorate of Picatinny
Arsenal has undertaken a study, in connection with its overall ex-
plosive safety program entitled "Safety Engineering in Support of
Ammunition Plants," to determine the TNT equivalency of Ml propel..lant.
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Objective

The objective of this work was to experimentally determine the
maximum output from the detonation of two Ml propellant granulations
(single-perforated, 0.013-inch web size, and multiperforated,
0.025-inch web size) in terms of their airblast overpressure and
impulse. The measured pressure and impulse values are to be com-
pared with those produced by a hemispherical surface burst of TNT
in order to determine the TNT equivalency of the Ml propellant.

DESCRIPTION OF EXPERIMENTS

Test Site

A series of tests were conducted on Ml propellant at the iIT
Research Institute (IITRI) explosives research laboratory near
LaPorte, Indiana, under the technical supervision of the Manufac-
turing Technology Directorate of Picatinny Arsenal.

A schematic diagram of the test area physical arrangement is H
shown in Figure 1. It consists of two concrete slabs 75 feet long A
by 10 feet wide in which 12 pressure transducers were installed.
The pressure transducers were mounted flush with the top surface of
the concrete slab in mechanically isolated steel plates. The gauges
were located at intervals on radial lines from ground zero (GZ).
The gauge positions ranged from 8 to 80 feet from GZ.

Test Configurations

Three basic configurations were tested. The first simulation
consisted of scaled cardboard drums which dimensionally represented
the actual shipping drum containers. In the second configuration,
the geometry included a truncated pyramid appropriately scaled to
represent the typical open feedhopper. The last configuration was
the closed feedhopper system. A combined cylinder-cone shape geo-
metry was used to represent the closed feedhopper simulation.

2
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Two sizes of scaled shipping drums were used for the shipping
container tests as follows:

Table 1

Scaled shipping container dimensions

Diameter Height Propellant weight AP
(inches) (inches) (pounds)

11.00 19.00 43(SP) or 55(MP)

9.50 15.25 27(SP) or 35(MP)

Thus, the aspect ratio of the cylindrical drums was approxi-
mately the same as the aspect ratio of a full-scale cylindrical card-
board shipping drum (i.e., L/D '- 1.69). Figure 2 illustrates the
relative placement and spatial arrangement of the C4 explosive
boosters with respect to the Ml propellant. These boosters were
shaped to provide the aspect ratio of 1:1. A cardboard cap was
placed over the cover so that the blasting cap could be inserted
into the system.

The full-size hoppers to be used at Indiana and Radford Army
Ammunition Plants are illustrated in Figure 3. Indiana AAP will be
using two different size open hoppers for multiperforated (MP) and
single-perforated (SP) Ml propellant. Normal operating loads are
130 pounds of SP and 190 pounds of MP in the open-feedhopper arrange-
rment. The closed feedhopper system will be utilized at Radford AAP•" for both the SP and MP M1 propellant materials. Normal operatingloads are 250 pounds for the SP material process and 303 pounds for

the MP conditions.

Both Indiana and Radford hoppers were scaled down in size to
"accommodate the test site weight requirements. Scaling down the *

"hoppers included preserving the ratios of the mass of Ml propellant/
mass of hopper, and the aspect ratio of the hopper. The mass of the
scaled hopper is changed by varying the thickness of the metal con- '.

tainer, and the volume is changed by varying the physical dimensions
of the hoppers, yet preserving their relative aspect ratios. Table 2
gives the dimensions of the scaled hoppers used during these tests.
Materials used to construct the hoppers were 1/8-inch mild steel for

4
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Table 2

Scaled hopper dimensions

Top Opening
Square

Nominal Depth x Top Opening
Load

Normal Load Full Scale Size
130 lb SP 12 x 42 Square Depth

50 lb SP 8.7 x 30.5 Square

Normal Load Full Scale Size
190 lb MP 16 x 34 Square Indiana AAP

Open Top Hopper :<50 lb MP 10.2 x 34.5 Square

Nominal D L H 1 -D.Diameter

LoadI

Normal Load Full Scale Size
250 lb SP 60.0 19.5 26.0 L

50 lb SP 35.1 11.4 15.2

25 lb SP 27.9 9.1 12.1

12 lb SP 21.8 7.1 9.5 H

6 lb SP 17.3 5.6 7.5

Normal Load Full Scale Size 4

303 lbs MP 60.0 19.5 26.0
Radford AAP

50 Ibs MP 35.1 11.4 15.2 Closed Top Hopper

7
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the open hoppers and 5052-M32 aluminum for the closed hoppers, rang-
rK ing in thickness from 1/8 inch to less than 1/10 inch, depending on

the charge weight.

Charge weights in the open hoppers were 50 pounds for both pro-
pellant granulations. In the closed hoppers, 6, 12, 25 and 50 pounds
of SP were tested; however, only 50 pounds of MP was tested.

The hoppers were positioned upright on the ground (at ground
zero) over a steel witness plate. The propellant was poured into
the hoppers and allowed to mound. Cylindrical C4 explosive boosters,
with 1:1 aspect ratios, were buried in the propellant near the top
of the mound.

Calibration Tests

During the course of this test program, several calibration
tests were performed to confirm the recording accuracy of the pres-
sure and impulse measuring systems. The calibration tests consisted
of measuring the peak pressure and positive impulse from the detona-
tion of a 5-pound hemispherical block of C4 explosive. The charge
was set on a steel witness plate at ground level. Pressure and im- 2
pulse data obtained from the C4 calibration shots was compared to
established TNT hemispherical surface burst data. (The increased
energetics of C4 are accounted for.)

TEST RESULTS

MI Single-Perforated Propellant TestsV Shipping Drum Configurations

The tests performed in simulated shipping drum containers are
summarized in Table 3. The tests are grouped according to nominal
charge weights. Two charge weights were tested, 43 and 27 pounds.
The results of these tests are plotted on Figure 4. The graphical
representation of the data is extremely concentrated such that any
visible distinction in peak pressure and positive impulse between
thE. two different charge weights is not possible. Single curves
for peak pressure and impulse were fitted to the data.

84
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Analysis of the curves (Fig 4) for peak pressure and impulse as
a function of scaled distance indicates that for the two charge
weights an asymptotic approach to the maximum output level has been
attained. Therefore, because of the data agreement, it can be gene-
ralized that an equivalent response for the full size shipping con-
tainer weight (105 lb) can be expected.

The scaled distance and scaled impulse values presented in this
report are based on the total charge weight. That is, the weight
of the booster, in equivalent pounds of propellant, has been added
to the propellant weight.

Open-Hopper Configuration

The three open-hopper (Indiana AAP hopper design) tests are
listed in Table 3 for single-perforated Ml propellant. In each test,
50 pounds of propellant material was used and 2.5 pounds of C4 ex-
plosive boosters were used for ignition. The peak pressure and
impulse relationships, as L function of scaled distance are illus-
trated in Figure 5. At small scaled distances, 4 ft/lbi/3, two
curves are shown. Although the hoppers were symmetrical with respect
to each gage line, different peak pressures and impulses were re-
corded along the two gage lines for the same test. These results
indicate that the detonation phenomena in the configuration was not
symmetrical. Secondly, the pressure-time wave shapes were multi-
peaked. The peak pressures recorded in Figure 5 are the maximums
and are not necessarily the first peak. This would also explain the
scatter in the data. The highest pressure and scaled impulse values
will be used to compute TNT equivalency. Note that at scaled dis-
tances of less than approximately 8 ft/lbI/3 the peak pressures and
scaled positive impulses are substantially lower than those obtained
from the shipping drum configuration tests.

Closed-Hopper Configuration

The closed-hopper configuratior. tests (Radford AAP hopper de-sign) included charge weights of 6, 12, 25, and 50 pounds. The size

of each hopper reflected the difference in the respective charge
weights such that the corresponding aspect ratios were maintained
at a constant magnitude. The characteristic pressure and impulse
versus scaled distance relationships are illustrated in Figures 6,
sin7, and 8. At small scaled distances the configurations produced
considerable scatter in the data, indicating nonuniform or unsym-

metrical explosion phenomena. In addition, the pressure-time waves

: 9



0 0 0000

0 0000 0J-J1-V 4JV4J 4.JJ0 00000

4 J V J 4&J 4 J .0r.r 4J 4J J4J4JJ

cu -r*4**4 -A. -A00-HCObob o00 b0000.I " .4 .-4 r4 -A.4..r4

> zJ.4.J 1-4-,- H F- r_ 0 r r.r.

bo br (30 000to k bo0e bJ'c bJ00

0) .) ) )a0. 0. .. 0 ) Q)04 )

0)4 u --4P

4~4J

Ln coMMc oO OO* 1C4 0
w.) . . .. .. ...... .....

0L 00

l 4 $4

50.
0 00

4- $4 C
a)4

0- 0

Cu "4 4J 0

34 :3

b o U4.44
""4 04

0
Z P4'J~ 000 UU0 0 nL)LnV .

10I0



~,.~.Impulse-Scaled Disaneftlkl

0 Test Ml/SP-2R 43 lbs
0 Test MI/SP-3R 27 lbs i
A Test 141/SP-4R 27 lbs~

:'j; 1 tTstM/P4R2 b

-h I.. ; .,*, ~

2 L. L* .

*ss s rI I N Nils*s * *

t,4 1021W

E

-44



L1/3

Impulse-Scaled Distance, ft/lbl/

3 1103

It- :WFFk:: 0 Test M1/SP-OH1 501b
U ~ j4 4 t~ 0 Test Ml/SP-0H2 501b w,

r4~ ffi4

-1j1'*I A:; fI 1:: 124 1.

I t'J f t1.

10 If__ Iii; A
E 2. I l I- I! 'II . i I :.

:1 :

t I-i 1 v: 1 hIIIHIt11 4 !
-AA

-A.. __T -. 4 . ___

2 10 10 !

4P

121Lfi



~~ Impulse-Scaled Distance, ft/lblI

io3 ~~ ii_ i
!1 ''.14 Ht0 Test MfTil hil 5 01lb

~~~':~_! F11Tst1lS-11150lb
Cn A Test Ml/SP-CH3 50 lbs

0 Test Ml/SP-CH4 50 lbs

es M*j-CH 50 *i*-1j;--1s-

2 Ill.. .fIj I

~10
7 17 Ii.II iIfi tl A 1 I1 1 tl

II

t Ii:: 11i q ; Ii

1HA

IAI
11L



j~t~v1/3

L Impulse-Scaled Distance, ft/lbl/

10t 1it 41id z it. 1!~. 1, £

!All M .iii: 0 Test Ml/SP-CH5 25 lbs ~ i
~~::1: :1 n 0 Test MI/SP-CH6 25 lbs i"M

L .. Test Ml/SP-CH7 25 lbsOilj~ :'ii; * 0 Test Ml/SP-CH8 25 lbs
.i ; ~.i

:;JJ
~T

IMPLS IM, -

U.

I i i 1W~I

414

0 7



Zb z

Impulse-Scaled Distance, ft/lb 1/3

31 10

LL

A Tes ___ PCHO lbs

"MII

II

r 11 1 4:Ljj
I ~ ~ ~ ~ ~ ~ ~ ~ F- PrsueSaeIisacf/b

Fi10IS lsdhoprcniuain
if~ ~ andti- 12 lbH

I'l 41 Il - 1 I i I i s i i i 11 1i i, I :.1i i r i



were multi-peaked, similar to the open hopper test results. The

maximum values of peak pressure and impulse are used to compute TNT
equivalency.

Figure 9 illustrates the peak pressure and impulse variation
as a function of charge weight for a number of scaled distances
(X = 3, 9, 18). For small magnitudes of charge weight (6 and 12 lb),
the respective pressure-impulse characteristic curves are practic-
ally equivalent. Figure 8 represents the scaled blast cutputs for
the two different weights as a function of scaled distance. A mini-
mal distinction in the blast output records is observed. In con-
trast, increases in scaled blast output versus scaled distance were
observed for the 25- and 50-pound charges (Fig 6 and 7). With in-
creasing scaled distances, both peak pressure and scaled impulse
are observed to level off for increases of charge weight (Fig 9).
A contrasting trend is also illustrated for small scalar distances.
That is, the blast output retord (pressure and scaled impulse) ap-
pears to continuously increase as the charge weight is increased,
and an asymptotic limit is not apparent.

In summary, for the SP-Ml type propellant, the closed configu-
ration yielded larger blast outputs in comparison to the open-hopper
configuration.

Ml Multiperforated Propellant Tests

Shipping Drum Configuration

The tests conducted with MI multiperforated propellant are pre-
sented in Table 4. The first series of tests were performed with
sealed shipping drum containers for charge weights of 35 and 55
pounds. The results of these tests are illustrated in Figure !0.
The larger drums and corresponding weight charges yielded greater
blast outputs at all scaled distances. One can only conclude that
for full-size shipping drums of multiperforated Ml propellant, an
equal or greater scaled blast output than that for the 55-pound
charge would be observed. For similar configurations and charge
weights, a noteworthy observation is that the blast outputs of the
SP-Ml and MP-Ml propellant types are substantially different for
equal magnitudes of scaled distance. The performance of the multi-
perforated propellant is substantially lower than that of the
single-perforated type (Fig 4 vs Fig 10).

16
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Open-Hopper Configuration

Three open-hopper configuration tests were conducted, each with

So pounds of multiperforated Ml propellant. The blast output results
are illustrated in Figure 11. In analyzing the results from Figure 11,
a considerable scatter of data points is observed. A consistent de-
viation from the mean (for pressure and impulse) is observed for all
scaled distances. For the peak pressure, the mean deviation is ap- 1
proximately ± 17 percent to ± 16 percent for X = 2 to 20 ft/lbl/3.
In the impulse measurement mode, the mean deviation varies from

21 percent to ± 9 percent for respective scaled distances,
X = 2 to 20 ft/lbl/3.

In comparing the blast output levels of multiperforated propel-
lant (MP-Ml) and that of the single-perforated (SP-M1) type, one ob-
serves that for equal charge weights (50 lb), the characteristic
blast output attained by the latter is larger than the level of theformer.

Closed-Hopper Configuration

Three closed-hopper configuration tests were conducted with

multiperforated type propellant. The blast output results are illus-
trated in Figure 12. As in the open hopper configuration, a similar
performance trend is apparent. That is, the single-perforated MI
propellant yielded a higher blast output than the multiperforated
Ml type. A considerable amount of scatter appears in the data re-
presentation (Fig 12); specifically, for the small scaled distances I
(2 ft/1bI/ 3 ) the deviation is large. This trend is evident for all
of the hopper configuration tests.

TNT Equivalency Calculations

TNT equivalency calculations were performed for the nominal I
SO-pound scaled drum configuration and for the open- and closed-
hopper tests for each Ml propellant granulation. The TNT equivalency
curves for each test configuration were computed from the best fit
curves for pressure and impulse as a function of scaled distance.
The TNT equivalency is defined as the ratio of the weight of TNT to
the weight of the test propellant that would produce the same over-
pressure (or impulse) at the same distance. The TNT peak pressure
and scaled impulse curves used to make the TNT equivalency calcula-
tions for this report are illustrated in Figure 13. These curves
must be used when converting TNT equivalency numbers back into pres-
sure and positive impulse values.

20
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Figure 14 illustrates the difference in the TNT equivalency
results for SP and MP Ml propellants. Although the charge weights
(SP=43, MP=55) are relatively the same, the single-perforated pro-
pellant produced a larger blast output (peak pressure and impulse)
than the multiperforated type. In addition, because of the identic-
al blast output behavior of single-perforated propellant for the
27- and 43 pound charge weight (scaled drum configuration), the TNT
equivalency curves for the two charge weights are identical. If
one deduces that the identical peak pressure and impulse behavior of
the two charge weights are an indication that the maximum output
level has been reached, then a logical conclusion would be that any
further increase of charge weight (aspect ratios being constant)
would result in similar blast responses. That is, the present SP
data could be used for predicting the blast outputs for full-sized
shipping containers (for SP-Ml propellant).

In contrast to the above statement that was made for the single-
perforated propellant, the results obtained for the 35- and 5S-pound
MP-Ml charge weights (drum configuration) do not define an identical
blast output trend. Because of the difference in the peak pressure
and impulse measurements for the two charge weights, any speculation
that the blast output of the larger charge weight is an upper bound i
is inconclusive. A justifiable projection of the full-scaled drum/l
configuration based on the blast output of the 55-pound charge
weight (MP) is not directly possible. An indirect approach, how-
ever, is feasible. For any particular configuration and charge
"weight, the blast output for the MP propellant is always smaller than
that for the SP propellant. The SP characteristic blast output can
be utilized as an upper bound for the blast output of MP propellant.

TNT equivalencies for the hopper configuration tests are illus-
trated in Figures 15 and 16 for both the SP and MP propellants. The
closed-hopper configuration (RAAP) gave higher blast outputs than
the open-hopper configuration (IAAP) and consequently higher TNT
equivalencies.

In the single-perforated closed-hopper test mode, the scaled
blast output increases with charge weight of propellants at scaled
distances less than 9 ft/lbl/3. Indications are that the maximum
output or limit has not been attained.

With this observation, expectations are that for the full-size
closed hopper, a TNT equivalency equal to or greater than that for
the 50-pound test would be attained. An equivalent generalization
can also be made for the full-size open-hopper configuration loaded
with SP or MP propellant.
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Maximum TNT equivalency curves are illustrated in Figures 17
through 22 for the three geometric configurations and the two Ml
TNT equivalency profile at scaled distances of 3, 9, and 18 ft/lbl/3.

CONCLUSION

The average TNT equivalencies computed for Ml propellant, single-
perforated (.013 inch web size) and multiperforated (.025 inch web
size) tested in three geometrical configurations, are summarized in
Table 6. In all of the scaled configurations the volumes and rela-
tive charge weights were manipulated to provide equivalent aspect
ratios relative to the full-size configuration.

Tests with single-perforated Ml propellant in scaled drum con-
tainers indicated that the results could be used to project the blast
output level from full-size shipping drums.

The multiperforated Ml propellant always yielded lower blast
outputs than the single-perforated propellant in similar configura- 4
tions and charge weights. Although the test with multiperforated
Ml propellant indicated that the data could not be scaled upward to
the full-size shipping drum container, the results from the tests
with single-perforated propellant can be used as an upper bound for

*" TNT equivalency determination for full-size multiperforated propel-
lant.

Tests with single-perforated Ml propellant in the closed-hopper
configuration showed that scaling or projecting the data obtained
to full-size hopper units was not feasible at scaled distances less
than 9 ft/lb1 /!.
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APPENDIX B

TNT EQUIVALENCY CALCULATION PROCEDURE
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4;7.

Computational Procedure

The computational procedure used to obtain TNT equivalencies is
illustrated in this appendix. TNT equivalency for pressure is de-
fined as the ratio of charge weight (i.e., TNT weight/test explosive
weight) that will give the same peak pressure at the same radial
distance from each charge. Similarly, the TNT equivalency for im-
pulse is defined as the ratio of charge weights that will give the
same positive impulse at the same radial distances. Since the boost-
er used to detonate the test explosive, propellant, or pyrotechnic
may be of the order of 10 percent of the test material weight it is
necessary to account for its contribution to the explosive output
(i.e., peak pressure and impulse).

The symbols used in this discussion are:

W Weight, lb

k Radial distance from charge, ft
A=R/Wl/3 Scaled distance, ft/lbl/3
P Peak overpressure, psig

I Positive impulse, psi-msec
E TNT equivalency, percent

These subscripts and superscripts are self-explanatory when
applied to the above symbols:

S Test sample
B Booster
TNT TNT explosive
I Impulse
P Pressure
• Quantity is not adjusted for booster weight
TOT Total charge weight, booster plus sample

Pressure equivalency is determined by first measuring the
quantities WS, R, and PSB- Where PSB is the peak pressure measured
when the sample was detonated with a C4 booster, it includes an
energy contribution from both C4 and sample.

One must first approximate an equivalent booster weight, in
terms of the charge sample weight, so that its weight can be included
in the total charge weight. The approximation is found by obtaining
ATNT, from Figure BI, for PSB PTNT"
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The first approximation for TNT pressure equivalency is then:

P- WTNT/WS (AS/ATNT)

where

AS R/WS1/3

and

XTNT R/ TN/

Since the pressures are to be equal at the same radial distance, the
R's cancel in the above equation. One applies this approximated
equivalency, Ep, to the weight of the booster to obtain the total
charge weight

WTOT WS + (I/Ep) WB(I.25) VV

A factor of 1.25 is applied to the C4 booster weight to obtain its
equivalent TNT weight.

A new X is now computed from

XTOT = R/WTOTI/3 Ai

and a corrected pressure TNT equivalency is computed.

P= WTNT/WTOT= (XTOT/'TNT) 3

The P subscript indicates a scale distance for pressure an~d is com-
puted from the revised sample weight. This iterative process can
be repeated using the revised value of Ep to recompute the weight
of the booster in terms of the sample weight, etc. However, the
second iteration has a small effect on equivalency.

Impulse equivalency is determined first by measuring WS, R, and
IS., where IS is the impulse measured when the sample charge was
detonated witR a C4 booster. One must first approximate an equiva- _9
lent booster weight, in terms of the charge sample weight. The
approximation is found by locating the data point IB/WB"3: XS on
Figure Bl. A 45-degree line is drawn through this data point to
intersect with the TNT impulse curve. Values of XTNT and ITNT/WTNT1 / 3
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are read at the intersection of the two straight lines. These values

give the equivalent TNT weight for equal .mpulses and radial distances.

At the data point ISB/WSl' 3 and XS let

aS- ISB/WS1/ 3 or ISB - aSWS1/3

and

Rs= 1/ 3 or R = XSwS1/3.

For equal impulses

ISB = ITNT

or

asWs 1/3 W 1/3

and for equal radial distances

xdistances1/3AsWs1/3 = XTNTWTNT1

Divide these two equations and get

as - s
aTNT TNT

Take the log of the above equation

logaS - logaTNT = log XS - log .TNT.
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This equation shows that a 45-degree' construction line on a log-
log plot will intersect the impulse curve and data point in such a
way as to satisfy the conditions of equal positive impulses at the
same radial distance.

The first approximation for TNT impulse equivalency is

I= WTNT/WS

11W
E* (I/Ws1/3)3/ 1/3_3 SS SB S (ITNT/WTNT) 3

Since I = ITNT they cancel in the above equation.
SBIR

One applies this approximated equivalency, E1, to the weight of
the booster to obtain the total charge weight

WTT =W + (I/EI) WB (1.25).

A new scaled distance

1/3
TOT = RIWToT

and scaled impulse is then computed as

TSB TOT

1/3
This data point is now located on Figure BI and new ITNT/WTNT and
XTNT values are determined from the 45-degree line intersection
method described.

The correct impulse equivalency then becomes

E = WT/WTOT

1= IsB/WTOT) II WTNT)3
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Computerized Calculations

The TNT equivalencies of the explosive material are determined
by use of a computer program. The first step in the program is to
fit a curve to the test data utilizing a manual curve fit method.
That is, a curve is drawn through the data points that are most
representative of the characteristic trend. To do this, the pres-
sures with their corresponding gage distances (and, similarly, im-
pulses with their distances) are entered into the program as input
data. Scaled distances are then obtained by dividing the gage dis-
tances by the cube root of the charge weight. Where the input con-
sists of experimental data from more than one test conducted under
identical conditions, the pressure and impulse values are averaged
before the curve fit is performed. Impulse input is converted to
scaled impulse by dividing by the cube root of the charge weight.
This is performed before averaging or curve fitting is done. Poly-
nomial fits of the first and second order were attempted; however,
inadequate results were obtained.

Having chosen the curve which best describes the test data,
pressure and impulse values with their corresponding gage distances
are entered into the program along with the appropriate curve co-
efficient. The TNT equivalence is determined twice, once using
points from the fitted curve at scaled distances corresponding to
the gage locations, and once using the actual data point. This is
done for both pressure and impulse data.

In the program, the TNT pressure and impulse curves versus
scaled distance appear as polynomial expressions. To determine the
pressure equivalency, the TNT scaled distance at a pressure equal
to the test pressure is determined from this equation. The TNT
equivalency at each pressure data point is computed as the curve ofthe ratio of the scaled distance of the test data to the TNT scaledM

distance.

A correction is made to the equivalency calculation to include
the weight of the booster in the total weight. The TNT equivalency
is then recoanputed on the basis of the corrected weight. This is
an iterative process and continued until the change in the ratio of
the scaled distance to the TNT scaled distance is negligible.

A similar procedure is followed for impulse data. Since scaled
impulse is used rather than actual impulse, a correction in the total
weight of the explosive to account for the booster weight involved
making corrections to the scaled impulse as well as the scaled dis-
tance.
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The computer output for the pressure tests includes, for the
averaged and curve fitted data, scaled distance, corrected scaled
distance, pressure, total weight, and TNT equivalency at each gage
location. Output based on raw data includes scaled distance, cor-
rected scaled distance, input pressure, TNT equivalency, and gage

distance at each data point. The output for the impulse tests issimilar except that scaled impulse and corrected impulse are included.
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